Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Rotello, C (Ed.)Position-specific intrusions of items from prior lists are rare but important phenomena that distinguish broad classes of theory in serial memory. They are uniquely predicted by position coding theories, which assume items on all lists are associated with the same set of codes representing their positions. Activating a position code activates items associated with it in current and prior lists in proportion to their distance from the activated position. Thus, prior list intrusions are most likely to come from the coded position. Alternative “item dependent” theories based on associations between items and contexts built from items have difficulty accounting for the position specificity of prior list intrusions. We tested the position coding account with a position-cued recognition task designed to produce prior list interference. Cuing a position should activate a position code, which should activate items in nearby positions in the current and prior lists. We presented lures from the prior list to test for position-specific activation in response time and error rate; lures from nearby positions should interfere more. We found no evidence for such interference in 10 experiments, falsifying the position coding prediction. We ran two serial recall experiments with the same materials and found position-specific prior list intrusions. These results challenge all theories of serial memory: Position coding theories can explain the prior list intrusions in serial recall and but not the absence of prior list interference in cued recognition. Item dependent theories can explain the absence of prior list interference in cued recognition but cannot explain the occurrence of prior list intrusions in serial recall.more » « less
- 
            Abstract This commentary argues against the indictment of current experimental practices such as piecemeal testing, and the proposed integrated experiment design (IED) approach, which we see as yet another attempt at automating scientific thinking. We identify a number of undesirable features of IED that lead us to believe that its broad application will hinder scientific progress.more » « less
- 
            Evidence-accumulation models (EAMs) are powerful tools for making sense of human and animal decision-making behavior. EAMs have generated significant theoretical advances in psychology, behavioral economics, and cognitive neuroscience and are increasingly used as a measurement tool in clinical research and other applied settings. Obtaining valid and reliable inferences from EAMs depends on knowing how to establish a close match between model assumptions and features of the task/data to which the model is applied. However, this knowledge is rarely articulated in the EAM literature, leaving beginners to rely on the private advice of mentors and colleagues and inefficient trial-and-error learning. In this article, we provide practical guidance for designing tasks appropriate for EAMs, relating experimental manipulations to EAM parameters, planning appropriate sample sizes, and preparing data and conducting an EAM analysis. Our advice is based on prior methodological studies and the our substantial collective experience with EAMs. By encouraging good task-design practices and warning of potential pitfalls, we hope to improve the quality and trustworthiness of future EAM research and applications.more » « lessFree, publicly-accessible full text available April 1, 2026
- 
            Abstract Statistical modeling is generally meant to describe patterns in data in service of the broader scientific goal of developing theories to explain those patterns. Statistical models support meaningful inferences when models are built so as to align parameters of the model with potential causal mechanisms and how they manifest in data. When statistical models are instead based on assumptions chosen by default, attempts to draw inferences can be uninformative or even paradoxical—in essence, the tail is trying to wag the dog. These issues are illustrated by van Doorn et al. (this issue) in the context of using Bayes Factors to identify effects and interactions in linear mixed models. We show that the problems identified in their applications (along with other problems identified here) can be circumvented by using priors over inherently meaningful units instead of default priors on standardized scales. This case study illustrates how researchers must directly engage with a number of substantive issues in order to support meaningful inferences, of which we highlight two: The first is the problem of coordination , which requires a researcher to specify how the theoretical constructs postulated by a model are functionally related to observable variables. The second is the problem of generalization , which requires a researcher to consider how a model may represent theoretical constructs shared across similar but non-identical situations, along with the fact that model comparison metrics like Bayes Factors do not directly address this form of generalization. For statistical modeling to serve the goals of science, models cannot be based on default assumptions, but should instead be based on an understanding of their coordination function and on how they represent causal mechanisms that may be expected to generalize to other related scenarios.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
